HYPOXEMIC RESPIRATORY FAILURE

Cause of Hypoxemia	A-a Gradient	
Decreased inspired O ₂	Normal A-a gradient. Fully corrects w/ O _{2.}	
Hypoventilation		
Diffusion disorder	↑ A-a gradient. Partially corrects w/ O _{2.}	
V/Q mismatch		
Shunt	↑ A-a gradient. WON'T CORRECT w/ O _{2.}	

CHEST

© 2021 American College of Chest Physicians

ALVEOLAR GAS EQUATION

· How much O2 in the alveolus

PAO₂ = [713 x FiO₂] – (PaCO₂/0.8) or

- PAO₂ = [(P_{ATM} P_{H2O}) x FiO₂] (PaCO₂/0.8)
 - P_{ATM} = Atmospheric pressure
 - P_{H2O} = Partial pressure of water (humidity)
- · Each of these components can affect oxygenation

A-a GRADIENT

· Classic method of assessing difficulties in oxygenation

A-a gradient = PAO₂ – PaO₂ PAO₂ = Alveolar PO₂; PaO₂ = Arterial PO₂

• Normal A-a gradient is less than 20 mm Hg while breathing ambient air (FiO₂ 0.21).

DECREASED INSPIRED OXYGEN

- Low PATM can decrease first part of alveolar gas equation
 - P_{ATM} = 760 mm Hg at sea level
 - P_{H2O} = 47 mm Hg in average settings
- · Causes: High altitude (eg, climbing the Andes or Mount Everest)

HYPOVENTILATION

- Rising PaCO₂ decreases second part of alveolar gas equation
- Causes: Decreased respiratory drive due to neurologic injury or sedatives, obesity-hypoventilation syndrome, OSA

DIFFUSION DISORDER

- Difficulty diffusing oxygen across capillary-alveolar interface
- · Less common than V/Q mismatch and shunt
- · Improves with supplemental oxygen
- Causes: Interstitial lung diseases, pulmonary edema (most common cause of reversible diffusion defects)

VENTILATION/PERFUSION (V/Q) MISMATCH

- Most common cause of hypoxemic respiratory failure
- There are gravity-dependent gradients of both perfusion (Q) and ventilation (V) in the lungs
- Ideal gas exchange depends upon matching adequate ventilation with adequate perfusion
- · Mismatching in either direction leads to hypoxemia
- Causes: Pneumonia, asthma, COPD, pulmonary embolus

SHUNT

- · Occurs when blood is bypassing the lungs
- Causes: Intrapulmonary shunting (eg, pulmonary AVMs, hepatopulmonary syndrome), intracardiac shunting (eg, atrial or ventricular septal defects)
- Does not improve with supplemental oxygen